Skip to main content

Speaker Detail

Professor Bruno Weber

University of Zurich, Switzerland


​Bruno Weber is Professor at the Institute of Pharmacology and Toxicology, University of Zurich. His group uses a wide range of imaging tools to study the cell-to-cell  communication pathways involved in energy metabolism and information processing in cerebral cortex. Furthermore, his group is working on dissecting  the interaction of neurons and astrocytes with the vascular system,  which is responsible for maintaining adequate delivery of oxygen and  energy substrates to the brain. As well as studying these systems, the development of imaging systems for in vivo research is an additional research focus of the group.


Glia-neuron interaction in the light of in vivo two-photon imaging

Bruno Weber, Institute of Pharmacology and Toxicology, University of Zurich, Switzerland

The lack of adequate methods to investigate brain energy metabolism with the required spatio-temporal resolution in the intact organism has hampered significant advances in the field. Förster resonance energy transfer (FRET) sensors specific for energy substrates, such as glucose, lactate and pyruvate have been developed and successfully used in cultured cells and in brain slices. A major advantage of these FRET sensors is that they do not interfere with the intrinsic metabolite concentrations and pathways. In addition to unsurpassed spatial resolution, FRET microscopy can also detect fast metabolic dynamics. Furthermore, these sensors have great potential for in vivo studies in combination with two-photon microscopy. Likewise, the ongoing development of novel genetically encoded calcium indicators have revealed complex spatiotemporal patterns of astrocytic calcium transients.
First, we present results using the genetically encoded FRET sensors for glucose, lactate and pyruvate in vivo. Recombinant adeno-associated virus (AAV) was used with appropriate promoters to express the sensors in astrocytes and neurons. Experiments were carried out under anesthesia and in awake, head-fixed mice. Various pharmacological interventions were developed and applied to compare the basal concentration and transients of energy substrates in single cells. We demonstrate that FRET sensors for energy substrates are powerful tools for in vivo investigations of the cellular compartmentalization of energy metabolism. We will present evidence for a significant lactate concentration gradient from astrocytes to neurons. This gradient is in support of a vectorial flux of lactate from astrocytes to neurons, as suggested by the astrocyte-neuron lactate shuttle hypothesis.
In the second part of the presentation, we report novel results on concurrent measurement of astrocyte and neuron calcium signals in the awake mouse. Astrocyte sub-cellular compartments show a delayed calcium response to sensory stimulation compared to neurons. However, fast signals that are similar in time scale to neurons occur in some astrocyte processes. This is most easily seen with membrane-bound, fast GCaMP6f. Disruption of locus coeruleus signaling (via DSP4 injection) reduced the number of spontaneous astrocyte calcium signals, but did not affect the astrocyte response to stimulation. The number of neurons responding to stimulation decreased, but the amplitude of the neuronal response was unaffected.

All sessions by Professor Bruno Weber

  • TuesdayApril 10
11:05 AM

"Glia-neuron interaction in the light of in vivo two-photon imaging"